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We calculate the average residence time r for a particle performing a random 
walk over a chain of N neighboring sites i =  1,..., N, with decay rates 2i 
depending on the location of the particle in the chain. Exact results are given for 
some particular cases, while bounds on T are given for specific initial conditions. 
In the cont inuum limit, various results from the literature are recovered or 
improved upon. 
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1. I N T R O D U C T I O N  

Survival probabilities in the trappings of random walks is a topic of con- 
siderable interest (see, e.g., Ref. 1). Another related subject which has 
received a lot of attention recently is the calculation of mean first passage 
times (see, e.g., Ref. 2). From still another, more engineering point of view, 
we mention the interest of obtaining the residence time distribution in a 
chemical reactor. (3) 

In this paper, we derive results for average decay times in one-dimen- 
sional chains. Depending on the way of viewing this decay, these results 
apply to one of the three above-mentioned classes of problems. Sym- 
bolically, a decay can be represented as a chemical reaction: 

X--,A (1) 

In the trapping problem, the occurence of a chemical reaction (1) will 
correspond to the trapping of the particle, changing its state from the free 
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1032  Van den Broeck and B o u t e n  

"X" to the trapped "A" state. In the first passage time problem, the average 
lifetime of a particle X is the average first passage time to the state A. 
Finally, in reactor theory, the symbolic reaction (1) can be regarded as a 
genuine chemical reaction in which the particle decays to an "inert" particle 
A or it can correspond to the exit of the particle out of the reaction volume 
in the case of a chemical reactor. 

In the theory of radioactive decay or in chemical kinetics one usually 
defines a reaction rate 2 as follows: 2 dt is the probability for a particle to 
change from the state X to the state A during a time interval dt. Note that 
we assume that this probability does not depend on the time that the par- 
ticle has already been staying in the X state, i.e., the particle is not aging. In 
this case the average residence (or survival) time r (mean first passage time 
to the state A) reads 

r = 2  -J (2) 

In more complicated problems, such as those mentioned above, the 
decay rate 2 is not a constant, but is a function of the position of the par- 
ticle X in the system. As far as the geometry of the latter is concerned, we 
will mainly deal with a system formed by N adjacent sites or boxes i, 
i =  1 ..... N (see Fig. 1). The particles are performing a time-continuous 
Poisson random walk over these sites. A space-continuous one-dimensional 
system can be obtained in the appropriate limit. The decay rate is now a 
function of the cell i occupied by the particle, i.e., 2 = 2 i. This dependence 
of 2 on i can be due to the presence of inhomogeneities in a chemical 
system (e.g., temperature or concentration gradients) or due to the com- 
partmentalization of the system (e.g., compartmentalized chemical 
reactors~3)). For  the trapping problem, 2 is nonzero only at the location of 
trapping centers, or the value of 2 is changing from site to site if all the sites 
are trapping centers with different trapping activity. Note that the traps are 
imperfect, since trapping is not immediate. Finally, in the context of first 
passage time problems, we are dealing with the mean first passage time 
from a site in the one-dimensional chain to one or more sites on a 
neighboring chain. 

m ~  -~ k; 

k I 
Fig. 1. 

X i X N 

A one-dimensional chain of N adjacent sites, k + being the transition rates between 
sites i and i +  1 and 2i being the decay rate in site 1. 
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Most of the papers in the literature deal with space-continuous 
models. However, it turns out that the calculations for the discrete model 
require very simple mathematics and the results for the space-continuous 
models are recovered in the appropriate limits. 

The paper is organized as follows. In Section 2, we give general 
equations on the basis of which specific results will be derived in the sub- 
sequent sections. In Section 3, we give the mean first passage time v from a 
given site in the N-dimensional chain to one of the sites on the neighboring 
chain, as well as the mean first passage time to the two sites at the 
extremity of the chain. In Section 4, we discuss the so-called weak and 
strong coupling limits. These limits correspond to letting the rate of 
exchange between adjacent boxes go to zero and to infinity, respectively. 
The corresponding residence times are ~w and v s. It is shown that rw and 
rs are an upper bound and a lower bound, respectively, for the residence 
time ~ for appropriate initial conditions. In Section 5, the first-order correc- 
tions to rw and r s are calculated. In Section 6, the continuum limit is dis- 
cussed and we conclude the paper in Section 7 with some general remarks. 

2. G E N E R A L  F O R M A L I S M  

We will denote by k + dt the probability that a particle transfers from 
the site i to the adjacent site i •  1 (see Fig. 1) during a time interval of 
length dt. The exit or decay rates 2i are nonnegative quantities and it will 
be supposed that at least one of them is different from zero. The probability 
p(i,  t), i =  1 ..... N,  that a particle is at site i at time t obeys the following 
gain-loss balance equation: 

d 
dt p(i,  t) = ki+ 1 p ( i  + 1, t) + k + I p ( i  - 1, t) 

- ( k +  + k T ) p ( i , t ) - 2 i p ( i , t ) ,  i = l , . . . , N  (3) 

where, for convenience of notation, we have introduced the quantities 
k~ = k ;  = 0, i.e., we are considering the case of reflecting boundary con- 
ditions. The other quantities k + are supposed to be strictly positive. Note 
that the total probability P( t )  to be in one of the sites, 

N 

P( t )  = ~ p(i,  t) (4) 
i = 1  

is decaying to zero in time 

d N 
d t P ( t )  = -- Z 2~p(i, t ) < 0  (5) 

i = 1  
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expressing the obvious fact that a particle will ultimately decay. In fact P(t) 
is the probability that a particle has a lifetime in the chain larger than t. 
The probability density PR(t) for a lifetime equal to t is given by 

PR(t) = -dP(t)/dt (6) 

and the average residence time reads 

= j tPR(t) dt = P(t) dt (7) 
0 

For later convenience, we introduce the matrices K, A, and Q defined by 
their elements: 

The matrices 

K o = k i + l ( ~ j , i + l  + k + - l b j , i  1 

- ( k  + + k  F 6,j, i , j = l  ..... N 

A~j = --2#5~,/ 

Q~j= K~ + A(/ 

K and A are nonposltive 

(8a) 

(8b) 

(8c) 

matrices, but the matrix 0 is 
negative definite. (4) The solution of Eq. (3) can now be written in the form 

N 

p(i, t) = ~ (ea')ij pl 0 (9) 
/= I 

where pO = p(j, t = 0) is the initial condition. We will denote by Xir and Yrj 
the right and left eigenvectors of the matrix Q, corresponding to the eigen- 
value #r, r = 1 ..... N. For  simplicity, we will suppose that the spectrum ~Lr is 
nondegenerate. Equation (9) can thus be rewritten as follows: 

N N 

p(i, t)= ~ Z XiremtYrJP 0 (10) 
j = l r = l  

It is easily verified that the matrix Q can be symmetrized by a similarity 
transformation with the diagonal matrix S: 

So.= cSi, s(p~t)l/2 (11) 

where the p~t, i = 1 ..... N, are the steady state distributions over the sites in 
the absence of a decay mechanism. The latter obey the detailed balance 
conditions: 

+ s t  ki Pt = k,.-+ lPi+l,st i =  1,..., N (12) 
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More explicitly, we have 

P~= Uk + k +  lkF+ 1""" kx (13) 

with N a normalization condition. As a consequence of the symmetrization 
property, we conclude that left and right eigenvectors of the matrix (1 are 
related as follows: 

Xir= Yr, p~ t (14) 

Moreover, the eigenvalues /~r are real and strictly negative. Taking these 
properties into account, we obtain by combining Eqs. (4), (7), (10), and 
(14) 

N N 

"c= - Z Z p~tGijP~ (15) 
i =  1 j - -  1 

with the Green's function Gi/defined by 

G~/= ~ YriYrJ (16) 
r - - 1  ]2 r  

Using the definition of an eigenvector, the detailed balance property (12), 
and the orthonormality of right and left eigenvectors, one can derive the 
following recurrence relation for G~+ 1,/in terms of Gt,.j with l~< i, valid V j: 

1 t 
G'+I . i -G ' /=  + st ~ [(~'.J+)~ , i = 1  ..... N - 1  (17) 

" ki Pi t =  1 

For i =  N, this relation has the following form: 
N 

).,p~tGtj= - I  (18) 
/ = 1  

Equation (17) allows us in principle to determine Gi.j in terms of 
G~j=  Gj.~, hence in terms of Gl~- The latter can be obtained from Eq. (18). 
Unfortunately, it seems to be impossible to obtain a simple compact 
solution of the recurrence relation (17) and (18). Nevertheless, they provide 
a good starting point to discuss particular cases, limits, and bounds on r. 

3. EXACT R E S U L T S  FOR ONE,  T W O ,  
OR T H R E E  T R A P P I N G  C E N T E R S  

We first consider the case in which only one of the decay rates is non- 
zero, i.e., 

)~i:~i*~i,i* (19) 
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Consequently, we obtain from the identity (18) 

Giv = - 1/2i. p~. 

and the recurrence relation (17) becomes 

(20) 

1 i 

Gi+ l'lj-Gij- ki+piSt l~1= (3t, J -3 t ,  i*) 

From Eqs. (20) and (21), one obtains 

1 
G ~ -  2i.p~t. - - +  Y" k+r~' ( ,~j-3~,.)  r = l  r r r  l=1 

'*E ' 1 
- -  + st 3 0 "  

,=1 k , p ,  t=~ 

(21) 

yielding for z [cf. Eq. (15)] 

i, j =  1 , l . [ , N (22) 

1 N--1 1 N N 
- -  s t  + st st (Pj  -- j.i*) (23)  2 , . p , . + Y  Z (p,-3,. , .)  y~ o 3 

r = l  kr Pr i = r + l  j = r + l  

Another case for which an exact solution can be obtained is for trapp- 
ing centers at both extremities of the chain: 

2 i = 215i, 1 AV 2N3i,  N (24) 

The discrete time version of this problem is the familiar gambler 's ruin 
problem (for a more sophisticated discussion, see Ref. 1). Proceeding in a 
way analogous to the derivation of Eq. (23), we obtain 

( st st r,---- ,).lpSltq-2Nps~q-,41Pld~NPN kr Pr 
r = l  

I 1 p s N  1 1 N 1 1 
• l + ~ ' J ~ l p ] t 2 N  Z k + _ s t  2 + st 

r=l ,.t',. q=l kqpq  

• _ p~t p 
i= 1 i= 1 \ j = r + l  1 

+ ~ 2 1 p i t  2 p~t 2 P O + 2 N p s ~  p~t 
r=l  kr  Pr i = r + l  j = r + l  i=1 j = l  

(25) 
The expressions (23) and (25) are complicated, but their generality allows 
us to investigate several interesting cases. For  the particular case i* = 1 in 
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Eq. (23) or in the limit ~N --~ 0 in Eq. (25), we obtain the well-known result 
for the mean first passage time in the usual one-dimensional random walk 
to a fictitious box at zero (5'61 

l N 1 l N N 
z - ~ - - +  Z ~ P~' Z pO (26) 21 p]' + s~ 

r = l  k r  Pr i = r + l  f=r+l  

If all the rates are equal, k,. -+ = k, and for initial conditions p O = p~t _~ N -  1, 
the results (23) and (25) simplify considerably. Equation (23) becomes 

T=w-+#zi.N 1 1 . ( N - 1 ) ( 2 N - 1 ) t _ ( i ,  l ) ( i . _ N ) ] 6  (27) 

For a trapping center with fixed activity 2i. = 2, but positioned at random 
in the chain, p(i*)=N -~, we obtain for the doubly averaged residence 
time: 

N N 2 l 
( z >  = = + - -  (28 )  

z 6k 

For perfect trapping, 2--. +co, this result becomes 

N 2 -  1 

{ r ) -  6k (29) 

On the other hand, Eq. (25) reads for k[ =k and p~ 

12Nk 2 + 2~2~,(N- l)2(N - 2) + 2k(2, + )~N)(N-- 1 )(2N-- 1 ) 
T = (30 )  

12k[k(21 + )~x) + 2 , 2 N ( N - -  I ) ]  

and for perfect trapping ()o~ and ,i N - ,  +oo)  

z = (N- 1)(N-2)/12k (31) 

Note that for N large, the leading terms in the results for perfect and 
imperfect trapping are identical, For similar conclusions in a discrete time 
model, see Ref. (1). 

Finally, we also mention the exact result for r in the case of a chain 
with three sites, N =  3, under the simplified conditions k [  -= k and pO = 
p~, = 1: 

9k 2 + 5k,~l + 5kJ~ 3 + 2k22 + 2122 %- ~1.~3 %- ,~2/i.3 

z=3(k221+k222+k223+k2t22+k2223+2k2123+212223 ) (32) 

Further applications of Eqs. (23) and (25) will be given in Section 6, 
where the continuum limit is discussed. 
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4, B O U N D S  ON T 

The stationary state distribution p~t, i =  1,..., N, is determined by 
detailed balance, Eq. (12), and by normalization. One can, without altering 
the values of these quantities, speed up or slow down the rates of exchange 
by replacing k~ by Ck~ with C > 0 .  Two extreme cases are worth 
consideringJ 7) In the so-called strong coupling limit, we let C ~  +oe. It is 
clear that in this case the initial probability distribution p0 relaxes instan- 
taneously to the stationary state distribution p~t. Due to the infinity fre- 
quent transitions between the sites, we expect that a particle will effectively 
see an average decay rate ,~: 

N 

.~= ~ ~ip~ t (33) 
i = l  

and its average residence time will be 

N 

r s = l  ~ 2,p~ t (34) 
i 1 

The other extreme case corresponds to taking the limit C ~ 0, thereby vir- 
tually eliminating the exchanges between boxes. In this so-called weak 
coupling limit, the lifetime of a particle is the average decay time in the site 
that it is occupying at t = 0, hence 

75w= - po (35) 
i =  1 " ~ i  

A rigorous derivation of Eqs. (34) and (35) will be given in the next sec- 
tion. 

Generally speaking, it is clear that 75w can be larger or smaller than 75s, 
depending on the initial conditions. To obtain bounds on z, we will specify 
further the initial conditions. A situation of practical interest is the case in 
which the initial probability distribution p0 is equal to the steady state 
distribution p~t for all i =  1,..., N. Such a situation is realized, e.g., if the 
trapping mechanisms are activated after the steady state distribution has 
been reached or if excitations are produced at random places in a system 
with constant rates k?  -= k (hence pO = pSt = N 1 ). In this case, the average i i 
residence time is given by [cf. Eq. (15)] 

N N 

72 ~- - -  2 2 p ~ t a ~ j P ;  t ( 3 6 )  

i=1 j=l  

We will show that 75 is now a monotonically decreasing function of the 
parameter C, starting from its upper limit 75w at C = 0 and approaching its 
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lower limit ~s when C--+ + oo. To prove this property, we will make use of 
the matrix notation introduced in Eq. (8), It can easily be seen that the 
Green's functions Gij introduced in Eq. (16) are the matrix elements of the 
symmetric matrix 

1 
G = S  - 2 -  (37) 

K + A  

where S is the diagonal matrix (11). Introducing the parameter C adds a 
factor C to the matrix K, so that the corresponding G(C) is given by 

1 
G ( C ) = S  2 _ _  (38) 

CK+A 

The matrices G(C) are symmetric and negative definite when C >  0. 
The expression (36) for the residence time has the form of a quantum 

mechanical "expectation value" of the positive-definite matrix - G ( C )  in 
the "state vector" fist. Let us consider two values C1 and C2 of the 
parameter C with 0~< C1 < C2. The difference of the corresponding 
residence times equals 

r(C2 ) _ .c(Cl ) = _fist. [G(C2) _ G(C1 )] .fist (39) 

We will show that ~(C2)~< ~(C1). To prove this, it is sufficient to show that 
the matrix G (C2) -G(C~)  in (39) is a positive matrix. From 

( e l  K -J- A ) S 2 - -  ( C  2 K Jr- A ) S 2 = ( C  I - C2)  KS 2 (40)  

and the properties of K and S, it follows that the difference of the two 
operators on the left-hand side of Eq. (40) is a positive matrix. 

We now use a theorem proven in Appendix B. From this theorem it 
follows that the difference of the inverse of these operators is a negative 
matrix. But the inverse operators are just G(CI) and G(C2). This shows 
that G(CI)-G(C2) is a negative operator, from which it follows that 
r(C2) ~< z(Cl). From the derivation in Appendix B it can also be seen that 
the strict inequality sign r (C2)<  r(C2) will hold unless the diagonal matrix 
A is a constant matrix. In this case v w = rs and r is independent of C, This 
result is corroborated by calculating the difference between rw and v s from 
Eqs. (34) and (35). This yields 

N r ( )~i - )~/ )2  
77W "L'S ~-- TS 2 ~ st st - P'P/ - 2 ~  ( 4 l )  

i ~ i  j = l  

which is always positive unless all 2i are equal. 
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5. C O R R E C T I O N S  TO T H E  W E A K  A N D  
S T R O N G  C O U P L I N G  L I M I T S  

In the strong coupling limit, we have to replace k~ ~ by Ck + in Eq. (17) 
and let C go to infinity. Since the matrix elements )~ip~tGij are all negative 
and have to satisfy Eq. (18), they are necessarily bounded. Hence in the 
limit C ~ +o% the rhs of Eq. (17) goes to zero and we conclude that all 
the matrix elements Gij are equal. From Eq. (18), we then find 

1 
G,7 _= G s - (42) 

EiN1 )~ip~ t 

yielding 
x N 1 1 

T2S - -  E E o s t G  s t _  __ (43) r i i/ p /  st i=1 j=l ~N-I "~,P~ 2 

in accordance with the intuitive arguments given in the preceding section. 
In order to obtain the first-order correction, we write 

G~/= G s + 6Gii (44) 

Inserting this ansatz into Eqs. (17) and (18) and taking into account that 
the rhs of Eq. (17) is small (of order 3), we obtain 

l i 
6 G i + l , j - 3 G t j - -  ~ (3~/+),tp~tG s) (45) 

' k+P~ ' ~= l ' 

N 

E "~iP) t f i G 0 - - 0  ( 4 6 )  

i - I  

These recurrence relations can be easily solved, leading to the following 
approximate result for the residence time close to strong coupling: 

N 1 1 N N 

r ~ r s + ( z s ) 2  ~ k+n st ~ ()~_)~,)p~t ~ (2p~ (47) 
r = l  r r r  i ~ r + l  j = r + l  

Note that if pO = p~t, then the first-order correction to the strong coupling 
result z s is nonnegative, in accordance with the fact that r s is a lower 
bound on r. The problem of calculating corrections to the strong coupling 
result for space-continuous systems has also been addressed in Refs. 8 and 
9. The relation with our results is discussed in the next section. 

Proceeding in an analogous way, we obtain the following first-order 
correction to the weak coupling limit: 

6~ r 
(48) G~W- 2 n st 

i~" i 
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and 

T ~,~ ,.L. W _ _  2r--'~rl kr+l pO_]~ ( 4 9 )  

Note  t h a t  o _  st if Pr - Pr ,  then the first-order correction is nonpositive, in accor- 
dance with the fact that  r w is an upper  bound  on r. 

6. T H E  C O N T I N U U M  L I M I T  

M a n y  results in the literature refer to the problem of t rapping in 
space-cont inuous systems. In order  to compare  with these results, we take a 
cont inuum limit in the following way. We introduce an x axis along which 
the N boxes are lined up (see Fig. 2). Moreover ,  we call q the width of  one 
box. We then take the limit N ~  o% r / -~0  with N~I=L equal to the con- 
stant length of the entire system. The product  #/ becomes a cont inuous  
variable x e [0, L] .  The transit ion rates will diverge, but  the quantities 

i( k ~  i + + k,- ) r/2 = D(x), �89 + - k~ ) q = w(x) (50)  

will be taken constant.  D(x) corresponds to the diffusion coefficient of the 
particle, and v(x), 

v(x) = 2 w ( x )  - dD(x)/clx 

to its systematic velocity. The decay rate 2 i becomes a cont inuous function 
)v(x) of x. The probabil i ty density P(x, t) to find a particle at position x, 

p(i, t) 
P(x, t ) =  lim - -  (51) 

i t / =  r 

obeys the following Fokker  Planck decay equat ion 

~,P(x, t ) =  - 7 - - j ( x ,  t ) -)o(x)  P(x, t) 
ON 

(52 )  

i i 

1,121 
o 

Fig. 2. In the appropriate limit the discrete system of N cells goes over into a continuous 
system. In the same limit the random walk over the cells converges to a diffusion process. 
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with the probability flux j(x, t) given by 

j (x , t )= v ( x ) - D ( x ) ~  x P(x,t) (53) 

and with reflecting boundary conditions: 

j(O, t)= j(L, t)=0 (54) 

The average residence time for this space-continuous system can be 
obtained by carrying out the above-described limiting procedure on the 
results obtained in the previous sections. For example, the correction to the 
strong result, Eq. (47), becomes 

"r s = )~(X) pst(x) dx 

"r = r s + (~cs) 2 dy 

x ~L dy' [2 -- 2(y ' ) ]  p~t(y,) JL dy" [~pO(y,,) _ 2(y") pSt(y,,)] (56) 
D(y) pst(y) 

with PSt(x) given by (N  is a normalization constant) 

ix v(x') (57) PSt(x) = N exp dx' D(x'-----) 

For initial conditions P ~  pSt(x), this result is identical to the one 
obtained by Wilemski and Fixman Is) [see also Eqs. (3.13) and (3.25) in 
Ref. 9]. In Ref. 9 a calculation procedure is outlined for general initial con- 
ditions, but no closed-form expression is given for the first-order correction 
to z s. 

The weak coupling result, Eq. (49), reduces to 

zw = f L P~ dx (58) 
o ,~(x) 

~ W _ f o  , ;~'(x) 

,V(x) ~o, ,) + D ( x ) ~  r tx)~ (59) 

A prime stands for the derivative with respect to the argument. 
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The results (56) and (59) can, for instance, be used to fit the numerical 
results obtained by Agmen and Hopfield C7) for the special case of a har- 
monically bound particle and an exponential decay rate 2(x). As another 
illustration of our results, we discuss an exactly solvable model in Appen- 
dix A. 

In discussing the continuum limit of Eq. (23), two cases can be dis- 
tinguished. 

Case 1. i*=  1. Setting 21~/=)o, combined with the above-described 
limit, we find that the probability density P(x, t) obeys a Fokker-Planck 
equation: 

0 
~,P(x, t )= - ~ x J ( X ,  t) (60) 

with a reflecting boundary condition at x = L, 

j(L, t) = 0 (61a) 

and a radiation boundary condition at x : 0, 

j(O, t )= +2P(O, t) (61b) 

The average survival time is obtained by applying the same limit procedure 
to Eq. (23): 

' / 
r = )opst(0------- ~ + pSt(y) .~ PSt(u) du P~ dv (62) 

This result is identical with Eq. (6) in the paper by Deutch (9/ (for dimen- 
sion d =  l). The particular case p o =  ps t  w a s  obtained earlier by Szabo 
et al. (~~ [Eq. (2.20) in Ref. 10]. 

Case 2. i * # l  and i * # N .  Noting that 

2i=2i*6iiKd~C~0 26(X--Xo) with 2i, q = 2 ,  i*q=Xo 

we obtain for P(x, t) the following Fokker-Planck equation with a delta- 
function sink with strength 2 at x = Xo: 

0 
a,P(x, t) = - ~ -  j(x, t) - ;o6(x- Xo) (63) 

o x  
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The corresponding mean survival time reads 

r = )~pSt(xo-------~ + dXD(x) pSt(x) du [PSt(ul-b(U-Xo)] 

f) • du [P~ - 6(u - Xo)] (64) 

Note that a nonexplicit result for z was also given by Szabo et al. ~l~) for the 
particular case P~ PSt(x). 

The continuum limit of Eq. (25), with 2~t/=2 and 2it /  =2 ' ,  provides 
us with the average survival time for a system obeying the Fokker Planck 
equation (60) with radiation boundary conditions at x = 0 and x = L: 

j(0, t ) =  2P(0, t) (65a) 

j(L, t)= 2'P(L, t) (65b) 

One finds 

r = 2pst(0) + 2'PSt(L) + )~P~t(0) 2'P~t(L) Jo D(yj-fi~t(y)j 

• 1 + ~.~P~t(O) ,UP~t(L) D(x) P~t(x) Jo P(y) pst(y) 

o u t x ~  r txl L >" . 

f: f: ]t + 2'P~(L) du PSt(u) dv P~ (66) 

As a simple example, we consider the case of free diffusion, D(x)= D = 
const, and pSt(x)=L i, for the initial conditions PSt(x)=P~ One 
obtains [cf. Eq. (30)] 

12D2L + 4DL2(2 + 2') + 22'L 3 
= (67) 

12D[D(2 + ,U) + 22'L] 

In the limit )~'~ 0, one recovers the simple result for one radiation boun- 
dary condition at x = 0 and one reflecting boundary condition at x = L [cf. 
also Eqs. (27) and (62)]: 

r = L/2 + L2/3D (68) 
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Finally, we note that the corresponding results for perfect absorbing (or 
Smoluchowski) boundary conditions are obtained by letting 2 and 2' go to 
+ Go in the above results. 

7. D I S C U S S I O N  

We have calculated the average residence time r in a one-dimensional 
finite chain for several particular cases and limits. In the space-continuous 
limit, several results obtained previously in the literature are recovered or 
improved upon. In the general case, no compact  expression for r could be 
derived, but for useful initial conditions one can show that r w is an upper 
bound on r while rs is a lower bound. For  general initial conditions, one 
can only state that A.ma x " - -1  is a lower bound on r, where 2max is the maximum 
of the 2i, i = 1 ..... N, respectively. 

A P P E N D I X  A 

As an example of an exactly solvable model, we consider the following 
situation [cf. Eqs. (52)-(54)]:  

v(x )  = 0 

D(x)  = D = const 

, ) v ( Y )  = .~ 1 for x e  E0, l / ]  (A.1) 

2(x) = 2 2 for )c ff [l l ,  L ]  

P(x,  t =  O)= 1/L 

The solution of (52) subject to the conditions (54) is a standard heat con- 
duction problem. From its solution, one can calculate the average residence 
time: 

r =  dt t - ~ dx P(x,  t) 

= dt dx P(x,  t) 

One thus obtains (L = Ii +/2)  

[~ 12 
r = 2--~q 22L 

(A.2) 

o l o 2  
L - c02 coth(c01l~) + co 1 coth(c0212 ) (A.3) 
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with 

(0~ = 21/D, (02 = 22/D (A.4) 

In the weak coupling result, D --+ 0, one finds r = rw. In the strong coupling 
result (D --+ oo) one obtains, including the first-order correction term, 

__ 1112 1 

r =  2 1 ~ + Z 2 L  3DL2 +-0 (A.5) 

which is in agreement with the general result, Eq. (56). 
It is obvious from (A.3) that ~ ~< rw. On the other hand, one finds after 

some algebra that 

zs <. r ~ (02 (coth xl - 1 )  + co1(coth x 2 - 1 )  >~O 

with x I = (o l l  1 and x2=(0z12. Since 

1 
coth x - - ) 0 ,  x~>0 

x 

we conclude that zs is a lower bound on r. 

A P P E N D I X  B 

We prove the following theorem. If A and B are symmetric and 
positive-definite matrices and ( A - B )  is a positive matrix, then 
( A - 1  B 1) is a negative matrix. 

The proof is based on the well-known identity 

1 1 1 ( A _ B )  1 l l 1 
B A=A ~+~ (A- B)~-(A- B)~ 

The two operators on the right-hand side are positive operators. This is 
easily seen by taking their expectation value in an arbitrary vector and 
using the property that all occurring operators are symmetric and positive. 
Note that the operator B - 1 -  A -1 is not necessarily positive definite: its 
expectation value will be zero in the vectors AVo, where Vo is an eigenvec- 
tor of ( A -  B) with eigenvalue zero. 
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